This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Glycosylation of 2-Thiouracil Derivatives. A Synthetic Approach to 3-Glycosyl-2, 4-dioxypyrimidines

A. I. Khodair^a; E. E. Ibrahim^b; E. El Ashry^c

^a Department of Chemistry, Faculty of Education, Tanta University, Tanta, Egypt ^b Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt ^c Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt

 $\label{eq:continuous} \textbf{To cite this Article} \ \ Khodair,\ A.\ I.\ ,\ Ibrahim,\ E.\ E.\ and\ Ashry,\ E.\ El(1997)\ 'Glycosylation\ of\ 2-Thiouracil\ Derivatives.\ A.\ Synthetic\ Approach to\ 3-Glycosyl-2,\ 4-dioxypyrimidines',\ Nucleosides,\ Nucleotides\ and\ Nucleic\ Acids,\ 16:\ 4,\ 433-444$

To link to this Article: DOI: 10.1080/07328319708001360

URL: http://dx.doi.org/10.1080/07328319708001360

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Glycosylation of 2-Thiouracil Derivatives.

A Synthetic Approach to 3-Glycosyl-2,4-dioxypyrimidines

A. I. Khodair^{1,*}, E. E. Ibrahim² and E. S. H. El Ashry^{3,*}

¹Department of Chemistry, Faculty of Education, Tanta University (Kafer EL-Sheikh Branch), Tanta, Egypt.

²Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt.

³Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.

Abstract: Reaction of 6-aryl-5-cyano-2-thiouracils 2a-d with glycosyl halides 4a,b under alkaline conditions gave the respective bisglycosylated derivatives 5a-h. However, their deacetylation with ammonia in methanol caused a cleavage of the S-glycosyl residue and gave the N-3 glycosylated analogues 6a-h.

INTRODUCTION

Pyrimidines have occupied a unique place and have remarkably contributed to biological and medicinal chemistry. Various analogues of thiopyrimidines possess effective antibacterial, antifungal, antiviral, insecticidal, and miticidal activities¹⁻³. Thiopyrimidine nucleosides are of interest owing to their occurrence as constituents of certain transfer ribonucleic acids (tRNA)⁴. A variety of pyrimidine nucleosides have shown interesting biological activities including antitumor activities^{5,6}, antiviral activity⁷, virucidal against the herpes virus⁸ and strain HF of HSV-1⁹. Among pyrimidine nucleosides¹⁰, 5-iodo-2-deoxyuridine (IdUrd) has been in clinical use as a drug for years. The most active congeners among the 5-substituted 2'-deoxyuridine derivatives are (E)-5-(2-halogenovinyl)-2'-

deoxyuridines¹¹, which are particularly active against HSV-1 and varicella-zoster virus. The structure activity relationships among 5-substituted 2'-deoxyuridine analogues have been studied in some detail^{12,13}. (2-Deoxy-D-glucosyl)uracil is an inhibitor of a nonspecific pyrimidine phosphorylase¹⁴. The versatile biological properties of pyrimidines and thiopyrimidines prompted us to investigate the synthesis, the antiviral activities and the antitumer activities of 6-aryl-5-cyano-2-alkylmercapto-3,4-dihydropyrimidin-4-ones **3a-h**, 6-aryl-5-cyano-3-(2',3',4',6'-tetra-O-acetyl- β -D-gluco- and D-galactopyranosyl)-2-(2",3",4",6"-tetra-O-acetyl- β -D-gluco- and D-galactopyranosyl)-3,4-dihydropyrimidin-4-ones **5a-h** and 6-aryl-5-cyano-3-(β -D-gluco- and D-galactopyranosyl)-3,4-dihydropyrimidin-2,4-diones **6a-h**.

RESULTS AND DISCUSSION

The 6-aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones **2a-d** were prepared in 28-42 % overall yield in two steps from the reaction of ethyl cyanoacetate with thiourea and aromatic aldehydes according to reported procedures ^{15,16}. The potassium salts could be isolated from the reaction whose acidification gave **2a-d**. A model study on the alkylation of **1a-d** and / or **2a-d** was carried out using iodomethane and ethyl bromoacetate by the reaction of one mole of the alkylating agents directly with the potassium salts of 6-aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones **1a-d** or the reaction with **2a-d** in the presence of potassium carbonate in DMF whereby the same product **3a-h** was obtained in each case (Scheme 1). On the other hand, the use of two moles of the alkylating agents led to the dialkylated derivatives ¹⁷. The structure of compounds **3a-h** was confirmed by the spectral data (IR, ¹H-NMR and MS). Their IR spectra showed a characteristic carbonyl group in the range 1633-1661cm⁻¹. Their ¹H-NMR spectra revealed the presence of an SMe or SCH₂ in the range 2.30-2.70 ppm and 4.10-4.30 ppm, respectively, as well as a broad singlet at δ 12.20 ppm due to the NH. These data as well as the mode of the reaction indicated that the

Scheme 1

p-MeOC₆H₄

p-MeC₆H₄

p-ClC₆H₄

g

h

i Ph

 CH_2CO_2Et

CH₂CO₂Et

 CH_2CO_2Et

Me

H

Η

Η

Me

site of alkylation was the sulfur rather than the nitrogen and in the case of the disubstituted derivative the N-3 was the second position for alkylation.

Reaction of 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide **4a**¹⁸ with **2a-d** or with the sodium salt of 2a-d in the presence of aqueous potassium hydroxide gave the corresponding bisglucosides 5a-d. Similarly, the reaction with 2,3,4,6-tetra-O-acetyl-α-Dgalactopyranosyl bromide 4b¹⁸ gave 5e-h. The structures of compounds 5a-h could be established and confirmed on the bases of their elemental analysis and spectral data. The elemental analysis as well as the mass spectra indicated the presence of the two glycosyl residues. Their IR spectra were characterized by the absence of signals for an NH groups and the presence of signals at 1660-1690 cm⁻¹ due to the carbonyl of the pyrimidinone in addition to the acetoxy carbonyl groups at 1750-1760 cm⁻¹. The ¹H-NMR spectrum of 5f showed the presence of two doublets at δ 5.85 and 6.30 ppm with spin-spin coupling constants of 10.63 and 7.96 Hz respectfully, that were assigned of H-1' and H-1". These coupling constants indicated their diaxial orientation with H-2' and H-2". Consequently, both glycosyl residues were in the β-configuration. Attempted deprotection of 5a-h with ammonia in methanol, did not give the anticipated deacetylated derivatives but gave the nucleosides 6a-h, respectively, indicating that a hydrolytic cleavage of the C-S bonds took place. The structures of compounds 6a-h were confirmed by elemental analysis and spectral data. The IR absorption spectra of compound 6a showed characteristic bands at 3346, 3226, 2210, 1725 and 1639 cm⁻¹ due to the hydroxy groups of the glucose moiety, N_1 -H, CN, C_2 =O and C_4 =O, respectively. The ¹H-NMR spectrum of compound 6a revealed the presence of a broad singlet at δ 11.85 ppm due to N₁-H. The presence of a one doublet at δ 5.41 ppm (J₁,₂=10.10 Hz), indicated the presence of only one β-D-glucopyranose moiety. The four hydroxy groups of glucose moiety resonate at δ 4.61-5.36 ppm (exchangeable by D_2O). The ¹³C-NMR spectrum of compound 6a was characterized by a singlets at δ 88.00, 151.50 and 166.30 ppm were due to C-1', C-2 and C-4, respectively.

NC
$$NH$$
 $EONa$ EOH NC NH EOH NC NH EOH EOH

	Ar	$\mathbf{R_1}$	R_2		Ar	$\mathbf{R_1}$	$\mathbf{R_2}$
5a	Ph	OAc	Н	6a	Ph	ОН	Н
b	p-MeOC ₆ H ₄	OAc	H	b	p-MeOC ₆ H ₄	ОН	Н
c	p-MeC ₆ H ₄	OAc	Н	c	p-MeC ₆ H ₄	OH	Н
d	p-ClC ₆ H ₄	OAc	H	d	p-ClC ₆ H ₄	OH	Н
e	Ph	Н	OAc	e	Ph	H	ОН
f	p-MeOC ₆ H ₄	H	OAc	f	p-MeOC ₆ H ₄	H	OH
g	p-MeC ₆ H ₄	H	OAc	g	p-MeC ₆ H ₄	H	ОН
h	p-ClC ₆ H ₄	H	OAc	h	p-ClC ₆ H ₄	Н	ОН
	1			1			

Scheme 2

TABLE 1 - THE SYNTHETIC DATA FOR THE COMPOUNDS PREPARED

Com p.	n M.p. Yield (%)		Mol. formula	Analysis (%) Calc./Found		MS		
Ρ.	(°C)	a	b	(Mol. Mass)	C	Н	N	m/z
3a	267	86	78	C ₁₂ H ₉ N ₃ OS (243.28)		Refere	ence 15	
3b	>300	87	82	$C_{13}H_{11}N_3O_2S$	57.13	4.06	15.37	273
				(273.31)	56.70	4.20	15.50	(M^{\dagger})
3c	>300	86	76	$C_{13}H_{11}N_3OS$	60.68	4.31	16.33	257
				(257.31)	60.50	4.40	16.10	(\mathbf{M}^{+})
3d	295	84	80	C ₁₂ H ₈ ClN ₃ OS	51.90	2.90	15.13	277
	0.50	0.0	70	(277.73)	52.10	2.80	15.00	(M')
3e	252	88	72	$C_{15}H_{13}N_3O_3S$	57.13	4.16	13.33	315
26	222	96	70	(315,35)	57.10	4.20	13.20	(M ⁺)
3f	232	86	79	C ₁₆ H ₁₅ N ₃ O ₄ S	55.64	4.38	12.17	345
2~	205	84	75	(345.37)	55.40	4.10	12.40	(M ⁺)
3g	295	04	75	$C_{16}H_{15}N_3O_3S$	58.35	4.59	12.76	329
3h	210	85	78	(329.37)	58.40	4.60 3.46	12.90 12.01	(M ⁺) 349
Ju	210	6.3	70	$C_{15}H_{12}CIN_3O_3S$ (349.79)	51.51 51.80	3.40	11.90	(M ⁺)
5a	162	57	34	$C_{39}H_{43}N_3O_{19}S$	52.64	4.87	4.72	889
Ja	102	57	34	(889.84)	53.30	5.40	5.00	(M ⁺)
5b	198	53	37	$C_{40}H_{45}N_3O_{20}S$	52.23	4.93	4.57	919
	170	4/4/	57	(919.87)	52.50	4.90	4.80	(M^*)
5c	158	58	32	C ₄₀ H ₄₅ N ₃ O ₁₉ S	53.15	5.02	4.65	903
				(903.87)	53.30	5.30	5.00	(M^{\dagger})
5d	170	55	38	C ₃₉ H ₄₂ ClN ₃ O ₁₉ S	50.68	4.58	4.55	924
				(924.28)	51.00	4.90	4.70	$(\mathbf{M}^{'})$
5e	216	56	36	$C_{39}H_{43}N_3O_{19}S$	52.64	4.93	4.72	889
				(889.84)	52.90	4.80	5.00	(\mathbf{M}^{+})
5f	215	52	35	$C_{40}H_{46}N_3O_{20}S$	52,23	5.03	4.57	919
				(920.87)	51.90	5.20	4.90	(\mathbf{M}')
5g	225	54	38	$C_{40}H_{46}N_3O_{19}S$	53.09	5.12	4.64	903
				(904.87)	53.30	4.90	4.90	(M')
5h	214	59	36	$C_{39}H_{43}CIN_3O_{19}S$	50.68	4.58	4.55	924
				(925.29)	50.80	4.50	4.80	(M [*])
6 a	207	77	-	$C_{17}H_{17}N_3O_7$	54.40	4.57	11.20	375
4 1	105	70		(375.34)	54.70	4.80	11.40	(\mathbf{M}^{\dagger})
6 b	185	70	-	$C_{18}H_{19}N_3O_8$	53.33	4.72	10.37	405
	222	67		(405.36)	53.60	4.50	10.70	(M ['])
6c	223	67	-	$C_{18}H_{19}N_3O_7$	55.53	4.92	10.79	389
6d	197	71		(389.36)	55.90	5.10	10.50	(M ⁺)
ou	197	/ 1	-	$C_{17}H_{16}CIN_3O_7$	49. 8 3 50.10	3.94	10.25	409
6e	240	81		(409.78) C ₁₇ H ₁₇ N ₃ O ₇	54.40	4.10 4.57	10.50 11.20	(M ⁺) 375
o.	210	01	-	(375.34)	54. 7 0	4.40	11.40	(M ⁺)
6f	215	70	_	$C_{18}H_{19}N_3O_8$	53.33	4.72	10.37	405
01	213	7.0	-	(405.36)	53.50	4.72	10.37	(M ⁺)
6g	229	67	_	$C_{18}H_{19}N_3O_7$	55.53	4.80	10.79	389
~ 5	/	07	_	(389.36)	55.70	5.00	11.10	(M^{\dagger})
6h	225	71	_	$C_{17}H_{16}CIN_3O_7$	49.83	3.94	10.25	409
				(409.78)	50.00	3.80	10.60	(\mathbf{M}^{+})

a = method A; b = method B.

TABLE 2 - IR AND ¹H NMR DATA OF THE COMPOUNDS PREPARED

comp.	IR selected bands (cm ⁻¹)	¹ H NMR (δ ppm) (DMSO)
3b	3414 (NH), 2219 (CN),	2.45 (3H, s, SMe), 3.86 (3H, s, OMe), 7.42 (2H, d,
	1650 (C ₄ O).	Ar-H), 8.15 (2H, d, Ar-H). 12.20 (1H, br.s, NH).
3c	3380 (NH), 2208 (CN),	2.38 (3H, s, SMe), 2.41 (3H, s, Me), 7.22 (2H, d, Ar-
	1633 (C ₄ O).	H), 7.75 (2H, d, Ar-H), 12.25 (1H, br.s, NH).
3d	3380 (NH), 2208 (CN),	2.58 (3H, s, SMe), 7.60 (2H, d, Ar-H), 7.97 (2H, d,
	1633 (C ₄ O).	Ar-H), 12.20 (1H, br.s, NH).
3e	3456 (NH), 2223 (CN),	1.08 (3H, t, J=7.00 Hz, Me), 4.06 (2H, q, J=7.20 Hz,
	1736 (COOEt), 1661	CH ₂), 4.12 92H, s, SCH ₂), 7.62 (3H, m, Ar-H), 7.93
	(C ₄ O).	(2H, m, Ar-H), 12.15 (1H, br.s, NH).
3f	3438 (NH), 2218 (CN),	1.12 (3H, t, J=7.10 Hz, Me), 4.07 (2H, q, J=7.10 Hz,
	1740 (COOEt), 1653	CH ₂), 4.13 (2H, s, SCH ₂), 7.12 (2H, d, Ar-H), 7.97
	(C_4O) .	(2H, d, Ar-H), 12.10 (1H, br.s, NH).
3g	3449 (NH), 2220 (CN),	
	1741 (COOEt), 1653	-
	(C_4O) .	
3h	3454 (NH), 2219 (CN),	<u>-</u>
	1739 (COOEt), 1661	
- -	(C_40) .	191 106 109 201 207 (24H 5a 9 Aa) 200
5a	2228 (CN), 1758 (MeCO),	1.81, 1.96, 1.98, 2.01, 2.07 (24H, 5s, 8 Ac), 3.99-4.15 (4H, m, H-6', H-6''), 4.20-4.43 (2H, m, H-5',
	1666 (C ₄ O).	H-5"), 4.98-5.22 (4H,m, H-4', H-4",H-3', H-3"),
		5.58 (2H, m, H-2', H-2"), 6.00 (1H, d, J=10.58 Hz,
		H-1'), 6.50 (1H, d, J=7.98 Hz, H-1"), 7.58 (3H, m,
		Ar-H), 8.08 (2H, d, Ar-H).
5b	2226 (CN), 1758 (MeCO),	1.75, 1.97, 1.99, 2.00, 2.07 (24H, 7s, 8 Ac), 3.90
CD	1672 (C ₄ O).	(3H, s, OMe), 3.98-4.15 (4H, m, H-6', H-6"), 4.20-
		4.15 (2H, m, H-5', H-5"), 4.85-5.20 (4H,m, H-4', H-
		4",H-3', H-3"), 5.50-5.65 (2H, m, H-2', H-2"), 6.15
		(1H, d, J=10.75 Hz, H-1'), 6.50 (1H, d, J=8.10 Hz,
		H-1"), 7.40 (2H, m, Ar-H), 8.01(2H, d, Ar-H).
5c	2226 (CN), 1752 (MeCO),	1.74, 1.82, 1.97, 1.99, 2.02, 2.03 (24H, 6s, 8
	1688 (C ₄ O).	Ac),2.43 (3H, s, Me), 4.05-4.15 (4H, m, H-6', H-
		6"), 4.20-4.45 (2H, m, H-5', H-5"), 5.11-5.19
		(4H,m, H-4', H-4",H-3', H-3"), 5.58 (2H, m, H-2',
		H-2"), 6.00 (1H, d, J=10.68 Hz, H-1'), 6.49 (1H, d,
		J=7.90 Hz, H-1", 7.42 (2H, m, Ar-H), 7.98 (2H, d,
٠.	0005 (CNT) 1555 (15 CC)	Ar-H).
5d	2225 (CN), 1757 (MeCO),	1.80, 1.95, 1.98, 2.02, 2.07 (24H, 5s, 8 Ac), 3.98-
	1668 (C ₄ O).	4.45 (6H, m,H-5', H-6', H-6'), 4.99-5.30
		(4H,m, H-4', H-4",H-3'', H-3"), 5.56 (2H, m, H-2', H-2"), 6.00 (1H, d, H-10.50 Hz, H-1'), 6.50 (1H, d, H-10.50 Hz, H-10.50 Hz, H-10.50 Hz, H-1'), 6.50 (1H, d, H-10.50 Hz,
		H-2"), 6.00 (1H, d, J=10.50 Hz, H-1'), 6.50 (1H, d, J=7.95 Hz, H-1"), 7.60 (2H, m, Ar-H), 8.10 (2H, d,
		Ar-H).
5e	2228 (CN), 1756 (MeCO),	1.82, 1.96, 1.99, 2.02, 2.14, 2.17 (24H, 6s, 8 Ac),
50	1669 (C ₄ O).	4.01,4.12 (4H, 2d, J=7.42 Hz, H-6', H-6''), 4.45,
	1007 (040).	1.01, 1.12 (TII, 20, 3 1. T2 IIC, II-0 , II-0), T.T.

TABLE 2 - IR AND $^1\mbox{H}$ NMR DATA OF THE COMPOUNDS PREPARED (CONTINUED)

		4.60 (2H, 2t, J=4.14 Hz, H-5', H-5"), 5.2-5.43 (6H, m, H-
		4', H4", H-3', H-3", H-2', H-2"), 5.86 (1H, d, J=11.20
		Hz, H-1'), 6.34 (1H, d, J=8.70 Hz, H-1"), 7.55 (3H, m, Ar-
		H), 8.10 (2H, d,Ar-H).
5f	2227 (CN), 1755	1.80, 1.97, 1.98, 2.00, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac),
	(MeCO), 1670	3.85 (3H, s, OMe), 4.02, 4.07 (4H, 2d, J=7.38 Hz, H-6',
	(C_4O) .	H-6"), 4.50, 4.60 (2H, 2t, J=4.20 Hz, H-5', H-5"), 5.10-
		5.45 (6H,m, H-4', H-4",H-3', H-3", H-2', H-2"), 5.85(1H,
		d, J=10.63 Hz, H-1'), 6.30 (1H, d, J=7.96 Hz, H-1"), 7.23
		(2H, m, Ar-H), 8.10 (2H, d, Ar-H).
5g	2226 (CN), 1755	1.84, 1.96, 1.98, 2.01, 2.15, 2.18 (24H, 6s, 8 Ac), 2.42
	(MeCO), 1668	(3H, s, Me), 4.03,4.12 (4H, 2d, J=7.40 Hz, H-6', H-6'),
	(C_4O) .	4.47-4.62 (2H, 2t, J=4.15 Hz, H-5', H-5"), 5.15-5.45
		(6H,m, H-4', H-4",H-3', H-3", H-2', H-2"), 5.86 (1H, d,
		J=13.22 Hz, H-1'), 6.34 (1H, d, J=8.65 Hz, H-1"), 7.42
		(2H, m, Ar-H), 7.98 (2H, d, Ar-H).
5h	2228 (CN), 1756	1.82, 1.96, 1.98, 2.01, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac),
	(MeCO), 1669	4.00, 4.10 (4H, 2d, J=7.40 Hz, H-6', H-6"), 4.45, 4.60
	(C_4O) .	(2H, 2t, J=4.15 Hz, H-5', H-5"), 5.15-5.40 (6H, m, H-4',
		H-4",H-3', H-3", H-2', H-2"), 6.00 (1H, d, J=10.95 Hz, H-
		1'), 6.35 (1H, d, J=7.60 Hz, H-1"), 7.60 (2H, m, Ar-H),
		8.15 (2H, d, Ar-H).
6a	3346 (OH), 3226	3.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61
	(N_1H) , 2210 (CN),	(1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH),
	1725 (C ₂ O), 1639	5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz,H-1'), 7.53
	(C_4O) .	(3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).
6b	3355 (OH), 3235	3.40-3.75 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 3.85
	(N_1H) , 2212 (CN),	(3H, s, OMe),4.59 (1H, t, 6'-OH), 4.68 (1H, d, 4'-OH),
	1728 (C_2O), 1649	4.92(1H, t, 3'-OH), 5.24 (1H, t, 2'-OH), 5.38 (1H, dd,
	(C_4O) .	J=4.56, 9.38 Hz, H-1'), 7.11 (2H, d, Ar-H), 7.95 (2H, d,
		Ar-H), 12.00 (1H, br.s, NH).
6с	3335 (OH), 3225	2.38 (3H, s, Me), 3.22-3.72 (6H, m, H-6', H-6'', H-5', H4',
	(N_1H) , 2212 (CN),	H-3', H-2'), 4.62 (1H, t, 6'-OH), 5.06 (1H, s, 4'-OH), 5.18
	$1728 (C_2O), 1656$	(1H, s, 3'-OH), 5.38 (1H, s, 2'-OH), 5.40(1H, d, J=10.50
	(C_4O) .	Hz, H-1'), 7.62 (2H, d, Ar-H), 7.95 (2H, d, Ar-H), 12.00
		(1H, br.s, NH).
6d	3338 (OH), 3223	3.30-3.73 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.52
	(NH), 2211 (CN),	(1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH),
	$1726 (C_2O), 1656$	5.28 (1H, d, J=5.30 Hz, 2'-OH), 5.33 (1H, d, J=9.92 Hz,
	(C_4O) .	H-1'), 7.60 (2H, d, Ar-H), 7.93 (2H, d, Ar-H), 12.00 (1H,
	2246 (OH) 2026	br.s, NH).
6e	3346 (OH), 3226	3.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61
	(NH), 2210 (CN),	(1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH),
	(C_2O) (C_2O) , 1639	5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53
(F	(C_4O) .	(3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).
6f	3348 (OH), 3219	3.40 (5H, m, H-6', H-6", H-5', H4', H-3'), 3.72 (1H, s, H-

TABLE 2 - IR AND ¹H NMR DATA OF THE COMPOUNDS PREPARED (CONTINUED)

-	(NH), 2209 (CN),	2'), 3.84 (3H, s, OMe), 4.54 (1H, br.s, 6'-OH), 4.68 (1H,
	1726 (C ₂ O), 1658	br.s, 4'-OH), 4.93 (1H, br.s, 3'-OH), 5.25 (1H, d, J=5.30
	(C_4O) .	Hz, 2'-OH), 5.38 (1H, d, J= 10.08 Hz, H-1'), 7.10 (2H, d,
		Ar-H), 7.95 (2H, d, Ar-H), 12.00 (1H, br.s, NH).
6g	3335 (OH), 3225	2.38 (3H, s, Me), 3.22-3.72 (6H, m, H-6', H-6'', H-5', H4',
	(NH), 2212 (CN),	H-3', H-2'), 4.62 (1H, t, 6'-OH), 5.06 (1H, s, 4'-OH), 5.18
	1728 (C ₂ O), 1656	(1H, s, 3'-OH), 5.38 (1H, s, 2'-OH), 5.40(1H, d, J=10.50
	(C_4O) .	Hz, H-1'), 7.62 (2H, d, Ar-H), 7.95 (2H, d, Ar-H), 12.00
		(1H, br.s, NH).
6h	3334 (OH), 3220	3.17 (2H, m, H-6', H-6"), 3.45 (2H, m, H-5', H4'), 3.70
	(NH), 2209 (CN),	(1H, s, H-3'), 4.17 (1H, br.s, H-2'), 4.50 (1H, s, 6'-OH),
	1722 (C ₂ O), 1655	4.65 (1H, s, 4'-OH), 4.95 (1H, s, 3'-OH), 5.20 (1H, d,
	(C_4O) .	J=5.10 Hz, 2'-OH), 5.35 (1H, d, J=10.30 Hz, H-1'), 7.60
		(2H, d, Ar-H), 8.00 (2H, d, Ar-H), 11.85 (1H, br.s, NH).

Antiviral Activity. No activity was found when the compounds 3a-h, 5a-h and 6a-h were tested against HIV-1 (HTLV IIIB) in MT-4 cells. 19

Atitumor activity. The 24 compounds were screened for antitumer activity against leukemia, non-small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer. Only compound **5h** showed enough activity to be further tested in additional tumor systems.

EXPERIMENTAL

All evaporations were carried out under reduced pressure at 40 °C. All melting points are uncorrected. Aluminum sheets coated with silica gel 60 F_{254} (Merck) were used for TLC. Detection was affected by viewing under a short-wavelength UV lamp. IR spectra were obtained (KBr disc) on a Pye Unicam spectrum 1000. 1 H-NMR and 13 C-NMR spectra were measured on a Wilmad 270 MHz or on a Varian 500 MHz spectrometer for solutions in DMSO- d_6 with TMS as internal standard. The chemical shifts are given as δ values and the J values are given in Hz. Mass spectra were recorded on a Varian MAT 112 spectrometer. Analytical data were obtained from the Microanalytical Center at Cairo and Tanta Universities.

Potassium salts of 6-aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones (1a-d). A mixture of thiourea (0.76 g, 10 mmol), ethyl cyanoacetate (1.13 g, 10 mmol), the appropriate aldehyde (10 mmol) and potassium carbonate (1.38 g, 10 mmol) in ethanol (30 ml) was refluxed for overnight and then cooled. The precipitate thus obtained was filtered off and recrystallized from ethanol (50 %) to give the products 1a-d in 30-50 % yield as yellow solids.

6-Aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones (2a-d). The potassium salt 1 was dissolved in water at 80 °C, filtered off and neutralized with glacial acetic acid. The light yellow precipitate was filtered off and washed with water. It was crystallized from a DMF-water mixture to give 2a-d¹⁵.

6-Aryl-5-cyano-2-(alkylmercapto)-3,4-dihydropyrimidin-4-ones (3a-h).

Method A: The potassium salt 1 (10 mmol) was suspended in ethanol (30 ml). To this suspension was added methyl iodide (10 mmol) or ethyl bromoacetate (10 mmol). The reaction mixture was stirred at room temperature. The white solid that separated was filtered off, washed with water and recrystallized from ethanol to give the products **3a-h**.

Method B: A solution of 2 (20 mmol) in DMF (10 ml) was stirred with potassium carbonate (10 mmol) and then treated with iodomethane (10 mmol) or ethyl bromoacetate (10 mmol). The reaction mixture was stirred for 4 h at r. t. and then diluted with water. The white solid was filtered off and recrystallized from ethanol to give the products **3a-h**.

6-Aryl-5-cyano-3-(2',3',4',6'-tetra-*O*-acet-yl-β-D-gluco- and D-galactopyranosyl)-2-(2",3",4",6"-tetra-*O*-acetyl-β-D-gluco- and D-galactopyranosylmercapto)-3,4-dihydro-pyrimidin-4-ones (5a-h).

Method A: To a solution of 2 (10 mmol) in aqueous potassium hydroxide [1.23 g, 22 mmol, in distilled water (6 ml)] was added a solution of 4 (22 mmol) in acetone (30 ml). The reaction mixture was stirred for 4 h at r. t. until the starting material was consumed (TLC).

The mixture was evaporated under reduced pressure at 40 °C and the residue was washed with distilled water to remove the potassium bromide formed. The solid product was dried and crystallized from absolute ethanol to give the products 5a-h in 50-60 % yield.

Method B: 6-Aryl-5-cyano-2-thiouracil 2 (10 mmol) was dissolved in 0.2 mM sodium ethoxide (100 ml) and then evaporated to dryness. The residue was dissolved in anhydrous dimethylsulphoxide (25 ml) containing 4 (20 mmol) and stirred at r. t. for 24 h. The reaction was then cooled, poured into water (200 ml) and extracted with chloroform (3 x 50 ml). The organic layer was washed with water (3 x 50 ml), dried over sodium sulfate and evaporated to dryness under *vacuum*. The resulting product was crystallized from ethanol to give the products 5a-h in 30-40 % yield.

6-Aryl-5-cyano-3-(β-D-gluco- and D-galactopyranosyl)-3,4-dihydropyrimidin-2,4-diones (6a-h). The protected nucleoside **5** (2 g) was stirred in saturated NH3/MeOH (50 ml) at r. t. for 24 h. The solvent was removed in *vacuo* and the residue was crystallized from methanol to give the deprotected nucleosides **6a-h**.

Acknowledgments: The authors would like to express their gratitude and thanks to Dr. John P. Bader, Chief, Antiviral Evaluation Branch, and Dr. V. L. Narayanan, Chief, Drug Synthesis and Chemistry Branch, National Cancer Institute, USA for carrying out the in-vitro antiviral testing.

REFERENCES

- 1. Cheng, C. C. Prog. Med. Chem. 1969, 6, 67.
- Scott, D. B. M.; Ulbricht, T. L. V.; Rogers, M. L.; Chu, E.; Rose, C. Cancer Res. 1959,
 19, 15; Chem Abstr. 1959, 53, 10967i.
- Sankyo Co, Ltd.; Ube Industries; Japan Kokai Tokyo Koho JP 5936, 667 [8436, 667];
 Chem Abstr. 1984, 101, 1109392.
- 4. Ruyle, W. V.; Shen, T. Y. J. Med. Chem. 1967, 10, 331.

- 5. Vince, R. U. S. Pat. 1981, 4: 268, 672; Chem. Abstr. 1981, 95, 98246.
- 6. De Napoli, L.; Piccialli, G.; Rosso, M.; Santacroce, C. J. Heterocyclic Chem. 1986, 23, 140.
- 7. Herdewijn, P. A. M. M. Antiviral Res. 1992, 19, 1.
- Shealy, Y. F.; O'Dell, C. A. U. S. pat. 1985, 4, 543, 255; Chem. Abstr. 1986, 104.
 62067.
- Shealy, Y. F.; Clayton, J. D. U. S. Pat. 1984, 4, 728, 736; Chem. Abstr. 1988, 109.
 23323.
- De Clercq, E.; Approache to Antiviral Agents; Harnden, M. R.; Ed., McMillan New York 1985, 57.
- 11. De Clercq, E. Pure Appl. Chem. 1983, 55, 623.
- Goodchild, J.; Porter, R. A.; Raber, R. H., Sim, I. S.; Upton, R. M.; Roger, R. M.;
 Viney, J.; Wadsworth, H. J. Med. Chem. 1983, 26, 1252.
- 13. Wigerinck, P.; Snoeck, R.; Claes, P.; De Clercq, E.; Herdewijn, P. J. Med. Chem. 1991, 34, 2383.
- 14. Zorbach, W. W.; Munson, H. R. JR. Synthetic procedues in nucleic acid chemistry 1968, 1, 379.
- 15. Kambe, S.; Saito, K.; Kishi, H.; Sakurai, A.; Midorikawa, H. Synthesis 1979, 287.
- 16. Ram, V. J.; Berghe, D. A. V.; Vlietinck, A. J. J. Heterocyclic Chem. 1984, 21, 1307.
- 17. Rashed, N., Mousaad, A., Saleh, A., Alex. J. Pharm. Sci. 1993, 7, 171.
- 18. Lemieux, R. U. Methods Carbohydr. Chem. 1963, 2, 221.
- 19. Nielsen, C. M.; Bygbjerg, I. C.; Vestergaad, B. F. (Letter) Lancet 1987, (No. 1), 566.
- 20. Hutchison, D. J.; Ann. N. Y. Acad. Sci. 1971, 186, 496.

Received April 2, 1996 Accepted February 27, 1997